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Abstract

In this work we show how automatic relative debugging
can be used to find differences in computation between a
correct serial program and an OpenMP parallel version
of that program that does not yield correct results. Back-
tracking and re-execution are used to determine the first
OpenMP parallel region that produces a difference in com-
putation that may lead to an incorrect value the user has
indicated. Our approach also lends itself to finding differ-
ences between parallel computations, where executing with
M threads produces expected results but an IV thread exe-
cution does not (M, N > 1, M # N). OpenMP programs
created using a parallelization tool are addressed by utiliz-
ing static analysis and directive information from the tool.
Hand-parallelized programs, where OpenMP directives are
inserted by the user, are addressed by performing data de-
pendence and directive analysis.

1. Introduction

Parallelization of existing programs continues to be of
interest to a growing number of researchers and developers
as parallel computers become commonplace. The porting
process presents several difficulties though, such as making
efficient use of parallel resources, minimizing the introduc-
tion of errors, and detecting and fixing any errors that are
introduced. There are three general approaches to select
from when parallelizing an existing program:
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e manual translation, where explicit parallel and com-
munication constructs are added to the code;

e compiler-based parallelization, where the user em-
ploys source code directives [8, 17] to steer the com-
piler into producing efficient parallel code; and

o fully interactive parallelization tools, where user inputs
steer the parallelization process [2, 10].

None of these approaches does a perfect job of address-
ing all the difficulties of parallelizing an existing program,
and in particular all of them fail to eliminate the intro-
duction of errors because each requires (or greatly benefits
from) user input at some level. Input from the user can be
erroneous in any approach, thus it is beneficial to consider
ways to assist the user in detecting and fixing bugs intro-
duced in the parallelization process.

In previous work [11] we presented a new approach
for detecting errors in distributed memory parallelized pro-
grams through the use of automatic relative debugging. This
approach aids the user by comparing the execution of the se-
rial program with that of the parallelized version, automati-
cally finding the first difference in the parallel program that
may have caused an incorrect value that the user has identi-
fied. Automation of the search for the first difference relies
on the availability of sophisticated dependence analysis of
the programs, and the ability to determine the computation
mapping from the serial to the parallel program. These re-
quirements were met with information collected from the
parallelization tool used in the porting process.

In this paper we extend the automatic relative debugging
approach in two important ways. First, we apply the ap-
proach to shared-memory OpenMP [13] programs, deter-
mining the first parallel region in the parallelized program



that contains a difference that may have caused an incorrect
value that the user has identified. Second, we enable auto-
matic relative debugging for the two parallelization methods
that apply to OpenMP — insertion of directives by the user,
and directive insertion by a parallelization tool.

The rest of this paper is organized as follows. In Section
2 we discuss the different ways bugs may be introduced in
the process of OpenMP parallelization. Section 3 presents
an overview of our previous work, and how we adapt it to
OpenMP debugging. Section 4 describes our prototype im-
plementation, and Section 5 describes related work. Section
6 presents experimental results, along with a comparison to
results from a prominent OpenMP debugging tool. In Sec-
tion 7 we discuss directions for future research, and we con-
clude our discussion in Section 8.

2. OpenMP Paralléization Bugs

OpenMP parallelization is a non-trivial process that, re-
gardless of the approach used, benefits greatly from user in-
put. While the need for user input is apparent in manual di-
rective insertion, it is actually important in tool paralleliza-
tion as well. A tool can effectively act as a parallelizing
compiler, but resulting parallel performance and scalability
is hampered by the conservative analysis the tool performs
in order to maintain correctness. User input to the tool is
highly desirable to refine program analysis by providing in-
formation such as expected program inputs, externally de-
fined functions, and clarification about algorithm structure.

When guiding the insertion of directives, the user has
to work in an interprocedural context, considering dataflow
and memory location re-use within routines possibly called
from parallel regions. Achieving maximum performance
can provide an incentive for the user to make overly op-
timistic decisions, such as adding incorrect directives or
telling a parallelization tool to remove a dependence that
is essential to the code operation. Such mistakes may lead
to a number of common problems, for example:

e parallel execution where a loop-carried dependence
exists;

e forcing a variable to be private even though its value
flows beyond the parallel region;

e sharing a variable that is assigned a value by several
threads in an unsynchronized fashion.

We want to address such problems with an approach that
is highly automated, both to relieve the user of part of the
debugging burden, and to avoid the possibility of further
user mistakes that delay the diagnosis and correction of
bugs.

3. Finding the First Difference

The next two subsections provide a general overview of
automatic relative debugging, including the high-level algo-
rithm and the information required to facilitate it. We then
describe the modifications needed to apply automatic rela-
tive debugging to OpenMP programs.

3.1. Basic Algorithm

The user initiates automatic relative debugging by pro-
viding the name and location of a variable known to have
a bad value in the parallel program. The relative debugger
then begins a series of steps that effectively automate what
the user might otherwise do by hand — look back through
the execution history to determine what statement computed
the bad value, test the values used in that definition, and re-
peat that search until the initial cause is found. Our previ-
ous work provides a thorough presentation of the algorithm
[11]; here we give an overview to familiarize the reader.

The search for the first difference is performed in a
depth-first search manner by repeating the following steps
until no earlier difference is found:

(1) Find the possible definition points of the earliest in-
correct value we have seen so far, using dependence
analysis information. (The user’s initial bad value
serves as a starting point.)

(2) Examine the variable references on the right-hand
sides of those definitions to determine a set of sus-
pect variable references to monitor in a re-execution.

(3) Instrument the suspect variable references in both the
serial and parallel versions of the program.

(4) Execute the instrumented programs, stopping when
a difference (i.e., a bad value) is detected. If any bad
value we encounter has not been seen before then use
it as input for step (1), otherwise we are done.

For step (1), our prototype implementation of the algo-
rithm uses a debugger to manage control of the serial and
parallel programs at the location of the earliest known dif-
ference. We use this control to implement two optimiza-
tions that help us to reduce the number of re-executions nec-
essary to search for differences. First, we observe that the
set of suspect variables determined in step (2) were com-
puted in previous program states, and are therefore can-
didates for examination by means of backtracking. Back-
tracking [1] is the retrieval of values without the use of re-
execution. It is commonly implemented using tracing. The
space overhead of tracing is undesirable, so we use a limited
form of backtracking that utilizes only the current program
state to retrieve values that have not been overwritten from



Li: W2 =r1 +wl

if ( ...) then

Ls: W3 =r2 + w2
el se

Ls: w3 =r3 + ul
endi f

Ly ul =0

Ls: X =r4 + W3

Figure 1. Code for simple backtracking exam-
ple.

previous program states. If any value retrieved in this way
is found to be incorrect then we can use that value as input
to step (1), saving us a re-execution.

For values of suspect variables that have been overwrit-
ten we use a second optimization. Such values are treated
as if they were incorrect, and we speculatively apply steps
(1) and (2) to the definition points of each to find if any of
their right-hand side values can be retrieved with backtrack-
ing. Note that this optimization can be applied recursively
for any right-hand side value that has been overwritten. If
a bad value is found among the right-hand side values then
we assume the overwritten value was incorrect as well, and
continue our overall search for the first difference with the
bad right-hand side value as input for step {1).

For example, suppose we have determined that the value
of w3 is bad in line Ly in Figure 1. Suppose as well that the
statements that could have computed w3 are at lines L, and
L3. We would like to retrieve the values of r 2, w2, r 3, and
ul to see if any of them may have caused the bad value of
w3. Backtracking is successful for r 2, w2, and r 3 because
their values are still in the program state at line L. We can-
not, however, retrieve the value of ul from line L3 because
it is overwritten in line L4; we will need to instrument line
Ls to stop the program after a re-execution in order to ac-
cess the program state at that line. Before we re-execute
we continue backtracking if any of r 2, w2, or r 3 are bad.
Suppose W2 is found to have a bad value, we then look to
the statement at line L, that computed its value and apply
backtrackingto r 1 and wil.

This example uses only scalar values, but subscripted
array expressions can be analyzed in a similar fashion as-
suming dependence analysis is employed. Such analysis
may reveal that a single element of an array should be com-
pared to proceed with relative debugging, but in other cases
(e.g. array reductions) more than one element of an array
is potentially incorrect. For the latter situation we simplify
the approach by finding the “most incorrect” array value,
where “most incorrect” is defined as the largest absolute

difference. The dependence analysis utilized in our pro-
totype handles backtracking for subscripted array expres-
sions across procedural boundaries, even when the array is
mapped to different numbers and sizes of dimensions.

3.2. Computation Mapping

The algorithm to find the first difference is a fairly
straightforward utilization of interprocedural dependence
information to navigate the potential causes of incorrect val-
ues. Determining whether a given value in the parallel com-
putation is correct, though, may require extensive informa-
tion about the mapping from the serial computation to the
parallel one. We have broken down the computation map-
ping into several components that help to answer important
questions we will have when performing comparisons.

e Source-to-source mapping provides information about
where instrumentation should be inserted in the pro-
grams, such as file names and line numbers for break-
points.

e Execution mapping builds upon the source-to-source
mapping by revealing the parallel processes and/or
threads that actually execute different portions of the
program. For example, it is often the case that only
one process/thread in a parallel execution performs file
1/0, so any values related to file 1/0 would be retrieved
from just that process/thread.

e |teration mapping is used to address program state-
ments that are executed more than once. The itera-
tions of a loop in the serial program may be distributed
across threads in the parallel program, for example,
and this mapping answers the question “which thread
performed iteration k£?”

e Data value mapping builds on the execution mapping
by describing how values in the serial computation are
represented in the parallel one. In a trivial case, a serial
scalar value might be replicated in each process and/or
thread. A more complex case might involve a serial
scalar value that is computed in parallel through some
reduction of individual process/thread values. This
mapping also accounts for any tolerance of inequality
in values resulting from influences such as differing
numerical methods or floating point representation.

Determining all these component mappings requires
both static and runtime analysis. The source mapping is
found statically, and the execution and iteration mappings
are found at runtime. The data value mapping requires both
analyses, since the type of parallelization (and therefore
the representation of values in the parallel computation) is
found in the source, but the actual distribution of values is
of course performed at runtime.



3.3. Madifications for OpenMP

The use of OpenMP, or any other compiler-based par-
allelization that employs source code directives, compli-
cates the search for the first difference in several ways.
The execution model may differ across portions of the pro-
gram, such as in OpenMP parallel regions that use multi-
ple threads, complicating the determination of those compo-
nents of the computation mapping that are found at runtime.
Furthermore, comparing values inside regions affected by
directives may require more sophisticated execution control
and instrumentation to obtain values, and care must be taken
to not affect execution with the “probe effect” of debugging.

Another complication is that directives may imply
changes to the program beyond just the execution model.
Directives can modify dataflow, such as OpenMP data scop-
ing directives (e.g. FIRSTPRIVATE and LASTPRIVATE)
that specify whether or not a given value flows into and/or
out of a parallel region. Directives may also imply ad-
ditional computation for the parallel program that is not
represented in the source; we may need to know of any
value changes associated with this computation. For exam-
ple, OpenMP REDUCTION directives generate this type of
computation and value change because the final reduction
of individually computed thread values is nowhere repre-
sented in the source. The compiler generates instructions to
perform a reduction across threads somewhere around the
end of the reduction region.*

A comprehensive approach to automatic relative debug-
ging of OpenMP programs must address all these issues
in order to find the precise location of the first difference
that may have caused the bad value the user has seen. Our
work accomplishes an important first step in that approach
by finding the first parallel region that contains a difference
relative to the serial program. Finding the first troublesome
parallel region can provide a focus for more intense analysis
(see Section 7.1).

The simplified goal allows us to treat parallel regions as
though they were single program statements, with values
flowing into and out of the statements, because we do not
attempt to resolve the cause of an incorrect value within
a region. We can therefore restrict our value comparisons
to serial sections of the parallel program. This avoids the
need to understand the semantics of intra-region computa-
tion, even for computation that is implied by directives. No
specialized execution control is required because no threads
within parallel regions need to be inspected; values that flow
into and out of parallel regions are checked only at region
boundaries. Thus we effectively reduce the amount of the
computation mapping needed to perform comparisons. The
execution mapping is not needed at all, because parallel

1The final result of the reduction remains undefined until all threads
have reached a barrier synchronization.

| SOVP PARALLEL PRI VATE(W2)
I SOVP & SHARED(r1,r2,r3,wl, w3, ul)
Li: w2 =11+ wl

if ( ...) then
Ls: W3 =12 + w2
el se
Ls: w3 =r3 + ul
endi f

1 $OVP END PARALLEL
La ul =0
Ls: X =r4 + W3

Figure 2. Code for OpenMP backtracking ex-
ample.

execution is limited to parallel regions. For the same rea-
son we do not need the portion of the data value mapping
that deals with representing serial values on multiple pro-
cesses/threads.

For example, suppose we are debugging the code frag-
ment in Figure 2 (created by adding OpenMP directives to
the code fragment from Figure 1), and we have again deter-
mined that the value of W3 is bad in line Ls. We would like
to retrieve the values of r 2, w2, r 3, and ul that were used
in lines L, and L3, but at line L5 only the values of r 2 and
r 3 are unmodified. ul is overwritten in line L4, and W2 has
an undefined value after the closing directive of the parallel
region because W2 is a PRIVATE variable within the region.
After finding that r 2 and r 3 are correct we might want to
re-execute to line L3 to check ul, or to line L4 to check w2,
but both options require us to stop execution within the par-
allel region. Instead, we re-execute and stop the program
before it has entered the parallel region. At this point we
can check ul, because ul is SHARED in the region. The
value of w2 computed by each thread at line L; is never
directly available to us because of the limited scope of w2,
but we can check w2 indirectly by looking at the values of
r1andwl.

Our approach can also perform comparisons of parallel
computations for the general case of M versus N threads
(M,N > 1, M # N), since we only compare values in se-
rial sections of the programs. Comparing two parallel com-
putations can be simpler and take less time — simpler be-
cause the source mapping is likely trivial (typically the same
source), and quicker because the amount of wall-clock time
needed for re-execution of two parallel programs is likely
less than for the case of a serial and parallel program. We
expect our prototype implementation of the relative debug-
ging approach will require little modification to support this
general case, but more testing is needed.



We need two pieces of information about parallel regions
to successfully adapt the difference search and implement
the steps described in the above example.

e We need to know about data scoping directives that
modify dataflow at parallel region boundaries.

e We need the location of region boundaries to avoid
stopping execution inside a region.

This information allows us to backtrack through parallel
regions, re-executing when necessary to reach the beginning
of a region. Our approach for obtaining this information is
covered in the next section.

4. Prototype | mplementation

We extended our distributed memory debugging proto-
type [11] to test our application of the relative debugging
approach on OpenMP programs. The prototype comprises
several modules:

o ParaWise (formerly called CAPTools) is a paralleliza-
tion tool from the University of Greenwich [3, 10].
It performs sophisticated dependence analysis and ar-
ray partitioning to convert programs for execution on
distributed-memory machines.

e CAPO is a parallelization tool from NASA Ames [9],
based on the ParaWise codebase. The user assists the
tool in inserting OpenMP directives into a serial pro-
gram based on the dependence analysis of ParaWise.

e P2d2 is a debugger for parallel programs from NASA
Ames [6]. It is portable across a variety of parallel ma-
chines and its user interface scales so that it is capable
of debugging 256 processes or more.

P2d2 provides the user interface for the prototype, as
well as execution control of the serial and parallel pro-
grams. A library encapsulation of ParaWise is used to
obtain the necessary dependence analysis in one of two
ways, depending on the method of parallelization of the
program being debugged. For tool-parallelized programs
created using CAPO, the dependence analysis is retrieved
from a database created when the program was parallelized.
For hand-parallelized programs the library performs depen-
dence analysis, using a conservative level of analysis to re-
duce the time the user must wait for relative debugging to
begin. This conservative analysis is fully automatic, it does
not exploit user inputs (e.g. knowledge of program input)
to refine the dependence graph.

A library encapsulation of CAPO is used to provide the
necessary OpenMP directive information described in Sec-
tion 3. For tool-parallelized programs the library derives

directive information from the parallelization database. For
hand-parallelized programs the library parses and analyzes
directives in the program source code.

The user is prompted for information about an incorrect
value they have found in the parallel execution, and the au-
tomated search for the first difference begins after all nec-
essary dependence and directive information is obtained.
The steps of the relative debugging algorithm are performed
by the ParaWise library and P2d2; ParaWise guides back-
tracking and re-execution based on the dependence analysis
and P2d2 retrieves and compares values. When necessary,
ParaWise makes use of directive information by asking the
CAPO library two questions:

e isvariable V at line L shared? — All variables outside
of parallel regions are by definition shared?. Variables
inside parallel regions are considered to be shared if
their value flows in and out of the parallel region, al-
lowing P2d2 to retrieve the value when the program is
stopped at some point outside of and after the region.
See Figure 2 and its explanation in Section 3 for an
example of this.

e where is the beginning of the parallel region enclosing
line L? — If line L is within a parallel region the first
line of that region is returned by CAPO. ParaWise uses
this to make sure it does not instruct P2d2 to stop exe-
cution and test values in a parallel region, which would
violate our decision to treat parallel regions as if they
were single program statements.

4.1. Determining the Computation Mapping

To maintain the automated nature of our prototype we
must determine, without user involvement, those portions
of the computation mapping that we need. The data value
mapping is approximated by considering values to be equal
if they are within some tolerance, to account both for differ-
ences in numerical method (for operations such as reduc-
tions) and for differences in compilers. The execution map-
ping is not required, because we do not compare values in
parallel regions, and our constraints on the source mapping
are described in the next subsection.

Our prototype’s handling of the iteration mapping has
advanced significantly since our previous work. We now
appropriately match, in most cases, instances of program
statements based on callsite as well as local iteration num-
ber (i.e. loop counters used in the right-hand side of the

2An exception to this is variables declared THREADPRIVATE, be-
cause such variables are allocated for each thread, and outside parallel
regions only the master thread’s variable is accessible/shared. We have
no need to access the variables of non-master threads outside of parallel
regions, so all variables outside parallel regions, from our perspective, are
effectively shared.



program t est

Ly: call work(a, b, 2)

Lo: call work(a, b, 3)

Ls: call print_results(a)
end

subroutine work(a, b, k)

Ly: do i=1,imax

Ls: do j =1, max
Le: a(i,j,k) =11/ b(i,j,k)
Lry: enddo
Lg: enddo
return
end

Figure 3. Finding the Iteration Mapping.

program statement). For example, suppose we want to com-
pare the value of b(1, 1, 3) at line Lg in Figure 3. Instances
of line Lg can be identified using both callsite and local it-
eration number. Static analysis reveals that only the call to
wor k from line Lo will make use of b(1,1,3), and once
inside that call we can evaluate 4, j, and k to insure we are
comparing at the correct instance.

The tests for callsite and local iteration number are per-
formed whenever the serial or parallel programs reach a
program statement that requires instance matching. Para-
Wise uses call graph information to determine the stack
trace a desired statement instance will have, and passes
this information to P2d2 for each instrumentation that is
requested as a part of step (3) in the algorithm from Sec-
tion 3.1. P2d2 uses this to test the stack trace each time a
program arrives at a given statement. If the callsite is con-
firmed, ParaWise instructs P2d2 to retrieve the loop coun-
ters used in that statement in order to test the local iteration
number.

Placing instrumentation inside loops or other oft-
repeated constructs can be extremely costly, so we have im-
plemented an optimization for our instance matching that
saves time in cases such as the nested loops in Figure 3. We
observethat b(1, 1, 3) is never overwritten in the nested loop
beginning on line L4, so it suffices to place instrumentation
to check b(1, 1, 3) at line L4 and merely test the stack trace
when that instrumentation is reached.

4.2. Limitations

Our prototype does not yet address a couple of possible
program behaviors resulting from insertion of OpenMP di-
rectives. See Section 7 for our plans to address these issues.

e Non-determinism, both intended and unintended, may
in some cases prohibit use of our approach due to ex-

ecution order and value changes upon re-execution. In
general, we require an approximation of replayability
defined in the following way: if V' is the set of all vari-
ables that we might retrieve values from in serial sec-
tions of the program, such that veV is the tuple (vari-
able name, subscript, line, iteration, ...) that uniquely
describes a variable in a single program state, then for
all executions the value of v, VveV, must be equal.

e Improper construction and/or placement of directives
can result in use of uninitialized values. For example, a
variable declared PRIVATE in a parallel region may be
used immediately after that region without an interven-
ing definition. In these cases the dependence graph is
effectively altered, and our dependence analysis does
not yet detect these changes.

Similar to the distributed memory debugging prototype,
we assume the source mapping from the serial program to
the parallel program is trivial. Relative debugging is per-
formed on programs that have the same source code, for
OpenMP this reduces to comparing a one-thread execution
with an N-thread execution. Note that this guarantees we
will only locate sources of difference in parallel regions, be-
cause if it were not for the multithreaded execution of par-
allel regions the two executions would be the same. Future
work on source mapping determination will alleviate this
restriction.

Our approximation of the iteration mapping does not yet
handle statement instances that must be identified with a
non-trivial global iteration number (i.e. loop counters iden-
tify a particular statement instance, but not all those coun-
ters are used in the right-hand side of that statement). For
example, a program could perform many iterations of a
number of statements to achieve some convergence require-
ment, but the iteration counter need not be used in the right-
hand sides of those statements. In general, counters may ex-
ist as global variables, or even be implemented with GOTO
statements, and therefore can be difficult to pinpoint; we
are investigating how our current dependence analysis can
be leveraged to address such scenarios.

The directive analysis we utilize to determine whether
variables are shared (and therefore retrievable) is not yet
comprehensive, in that we assume variables are only shared
when their values flow in and out of a parallel region. More
accurately, values may be retrievable before and/or after a
region, depending on the storage class that defines the flow
into/out of the region. We will enhance the prototype to
query CAPO for the separate cases of values flowing into a
region (e.g. FIRSTPRIVATE), out of a region (e.g. LAST-
PRIVATE), or both.



5. Related Work

Guard [18] is a relative debugger that relies on user as-
sertions about value equivalence to direct the comparison
of values between two programs. Assertions are given as
input to the debugger, and Guard then runs the programs
side-by-side, checking for any assertion violations.

DUCT [15] is a tool used with VSGuard [4] to analyze
use define chains during relative debugging for Microsoft’s
Intermediate Language (MSIL). VSGuard and DUCT im-
prove upon Guard by allowing the user to quickly formulate
assertions for each step of the relative debugging process
based on use define chains in a GUI.

Intel’s Assure [8] attempts to predict errors that will oc-
cur in a parallel execution of an OpenMP program. Static
and dynamic analysis of a serial execution of the program
is used to identify potential storage conflicts and data races.
See Section 6.1 for a comparison of results from Assure and
our prototype for the same test case.

Sun ONE Studio 8 [16] offers an OpenMP-aware f95
compiler that can perform interprocedural dependence anal-
ysis to find any parallelization inhibitors, but this analysis
seems limited to performance enhancement without provid-
ing bug detection.

HP Visual Threads [5], based on Eraser [14], provides
a way to verify proper locking discipline when lock-based
synchronization is used. OpenMP programs can be ana-
lyzed by Visual Threads, but it is unclear how helpful that
analysis would be because many OpenMP programs do not
make heavy use of lock-based synchronization.

IBM Rational PurifyPlus [7] performs memory and per-
formance profiling, and some versions detect deadlocks and
race conditions in multithreaded programs. OpenMP is not
directly addressed by the tool, though, so the benefits to our
intended users are unclear.

6. Example

We tested the prototype’s ability to debug both tool- and
hand-parallelized programs by applying it to the NAS Par-
allel Benchmark LU [12]. A serial version of LU was par-
allelized using CAPO, with erroneous user inputs given to
CAPO so that a parallel program was produced that failed to
generate correct output when executed with more than one
thread. LU contains a subroutine ver i f y that checks the
output values and reports to the user whether the benchmark
executed correctly. One of the values that triggers a failure
inveri fy isused as the starting point of the search for the
first difference.

Backtracking from the bad value in ver i f y to the first
parallel region that causes the bad value requires the pro-
totype to search backwards through at least 3 subroutines.
See Figure 4 for the relevant portion of LU’s call graph.

mai n
~ T~
| ssor | |pintgr| |verify|
PN
| bits | | buts |

Figure 4. Portion of call graph of LU.

The guilty parallel region is in subroutine but s, which is
called by subroutine ssor , and values from ssor are used
in pi nt gr before they eventually reach verify. Re-
execution must be used several times to access program
states in these subroutines.

Testing the prototype on a tool-parallelized program is
straightforward — we simply use the program and paral-
lelization database generated by CAPO. After 3 iterations
of inserting instrumentation and re-running one-thread and
two-thread executions (plus the initial execution of each to
confirm the user’s bad value), the prototype correctly deter-
mines the guilty parallel region. On our test machine (dual
Pentium I11 933MHz), using LU’s class S benchmark size,
this debugging session takes about 20 seconds. For refer-
ence, complete execution of the serial and parallel versions
takes 0.7 seconds and 0.5 seconds, respectively. Our pro-
totype continues execution of only one program at a time,
so an ideal iteration with no overhead would take at most
1.2 seconds, for an ideal session time (4 executions) of 4.8
seconds.

The prototype’s operation on a hand-parallelized pro-
gram is tested by treating the same tool-parallelized pro-
gram as though it were hand-parallelized. The prototype is
not given access to the database of parallelization informa-
tion, and therefore must perform its own dependence and
directive analysis to obtain the necessary information for
the relative debugging algorithm. The correct result is again
obtained after 3 iterations of inserting instrumentation and
re-running the programs, but more backtracking is required
due to the conservative dependence analysis. The increase
in the number of values retrieved and compared is roughly
five-fold over the tool-parallelized case. Total time for this
debugging session is 75 seconds, of which about 26 seconds
is dependence and directive analysis.

Our test version of LU actually contains two data races,
one intended and one unintended. To our knowledge both
have produced the same sequence of instructions for every
parallel execution we have performed, and have therefore
met our replayability requirements. The unintended data
race is contained in the parallel region in but s that is re-
ported to the user as the location of the first difference, and
is indeed the cause of the bad value inver i f y that the user



sees when running with more than one thread.
6.1. Comparison to Assure

We analyzed our LU test case using Assure [8] to see
if its results matched, or were superior to, those given by
our prototype. In order to make use of Assure, though, we
first had to modify the test case to eliminate any uses of the
OpenMP runtime library routine onp_get _t hr ead_num
Assure performs its analysis by simulating a parallel ex-
ecution using only an instrumented serial execution of
the program, and use of onp_get _t hr ead_num some-
how prevents this simulation. Our original LU test case
used onp_get _t hr ead_num for point-to-point synchro-
nization to achieve pipelining of threads in routine bl t s,
to protect access to shared array v; we modified bl t s to
instead achieve pipelining using a shared array of flags.

Assure found a total of six problems that our version of
LU might have when run in parallel. Three of these related
to variables declared PRIVATE in parallel regions, in prac-
tice these do not cause errors in parallel executions. The
remaining three are all races — two races in bl t s, and one
in buts. The races in bl t s are for the two shared ar-
rays mentioned earlier, our array of flags and v. We fully
intended the first race to occur (and tested to make sure it
occurs correctly), and because of this we know the accesses
to v are in fact synchronized. The last race, in but s, is
the true cause of error in parallel executions of the program.
The parallel region that encloses this race is the same re-
gion reported by our prototype. The Assure session takes
over 200 seconds for the serial execution alone, plus addi-
tional time for the program modification, instrumentation
and compilation, and processing of the output files gener-
ated by the instrumentation.

Assure’s analysis is helpful when determining the cause
of problems in parallel executions of this version of LU
(suitably modified by the user), but even in this small test
case it can be seen that Assure’s error report potentially ob-
scures the result the user needs to see. If there were many
races such as those intended in bl t s, the user would have
to verify each systematically in order to rule it out as a cause
of the bad value they observed. Our prototype instead di-
rects the user to a parallel region that definitely produces
different values in a parallel execution than in a serial one.
The user must decide if they require Assure’s more general
overview of possible issues in their program, our more ac-
curate analysis of a particular issue, or the use of both these
tools.

7. Algorithm and Prototype Extensions

We have plans to address non-determinism with a race-
detection tool for OpenMP that would complement our

relative debugging work. This tool could verify that
our replayability conditions are met, and possibly enforce
that replayability if a program proved to be more non-
deterministic than we would like. A user could also address
non-determinism through other tools such as Assure.

We believe that usage of uninitialized values, due to im-
proper construction and/or placement of OpenMP direc-
tives, can be detected and readily fixed based on knowledge
of correct dataflow in the serial program, directive informa-
tion, and runtime information. 1t would be interesting to see
how such analysis might compliment, or prove superior to,
that of Assure.

7.1. Identifying Problems within OpenMP Parallel
Regions

An important next step for OpenMP automatic relative
debugging is to resolve problems within parallel regions.
Checking for potential dependence violations in parallel re-
gions could be performed using static analysis on the entire
code, but this taxes the user with weeding out false posi-
tives due to the conservative nature of dependence analysis
and lack of any runtime information. The identification of a
problem in a particular instance of a specific parallel region
should enable us to dramatically reduce the number of false
positives.

Only those statements in a parallel region that are related
by dependences to an erroneous variable need to be investi-
gated, and the incorporation of runtime values provided by
P2d2 can even further reduce the number of potential errors
presented to the user. In addition, the decisions made dur-
ing OpenMP parallelization (whether user- or tool-based)
can be checked against the automatic directive generation
algorithms used in CAPO so that other potential problems
may be identified. Constructs such as OpenMP reduction
variables, and the use of optimizations like the NOWAIT
directive modifier, can be checked for correctness to warn
the user in suspect cases.

For tool generated parallel code, the decisions made by
the user in the parallelization process (e.g. dependence
deletions) can be checked against the potential problems
identified in the parallel region. If any user decision di-
rectly affected the parallelization (e.g. allowing a variable
to be privatized), then that decision can be relayed to the
user for re-examination.

Performing backtracking and value comparisons inside
parallel regions will be difficult for a couple of reasons.
First and foremost, the execution mapping may be quite in-
tricate due to directives such as SECTIONS, ORDERED,
and WORKSHARE that allow a fine-grain division of work
among threads. We may need to query threads at various lo-
cations to determine which is performing a given portion of
the computation. For PARALLEL DO loops it may suffice



to require a STATIC scheduling of iterations among threads,
so that the distribution of iterations can be queried before
the DO loop executes.

Another potential issue is barriers, both implicit and ex-
plicit, that block progress of threads we need to advance to
reach the next instrumentation location. It should be possi-
ble to instrument most of these locations so that the proto-
type is notified when a thread cannot make further progress,
but other scenarios such as point-to-point synchronization
of threads may be hard to detect and instrument automati-
cally.

8. Conclusions

In this work we have successfully extended the automatic
relative debugging approach for use on shared-memory
OpenMP programs, providing the user with a means to find
differences in computation between both a serial program
and an OpenMP parallel version of that program, and be-
tween M-thread and N-thread executions of an OpenMP
program (M, N > 1, M # N). Using backtracking and re-
execution we search through the execution history of both
programs to find the first difference that may have caused
an incorrect value the user has seen. The location of paral-
lelization error(s) is bracketed to the first parallel region of
the erroneous program that contains a difference relative to
the reference program.

The approach is applicable to OpenMP programs cre-
ated by either tool- or hand-parallelization methods. For
tool-parallelized programs we utilize information from the
tool to enable backtracking and value comparisons. Hand-
parallelized programs are analyzed to obtain the necessary
data dependence and directive information, allowing the
user to begin relative debugging without having to furnish
this information. In both cases the user need only provide
an incorrect value from the parallel execution to initiate the
difference search.
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